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Abstract

A micromechanics-based constitutive model is developed to predict the effective mechanical behavior of unidirectional
laminated composites. A newly developed Eshelby’s tensor for an infinite circular cylindrical inclusion [Cheng, Z.Q., Batra,
R.C., 1999. Exact Eshelby tensor for a dynamic circular cylindrical inclusion. J. Appl. Mech. 66, 563-565] is adopted to
model the unidirectional fibers and is incorporated into the micromechanical framework. The progressive loss of strength
resulting from the partial fiber debonding and the nucleation of microcracks is incorporated into the constitutive model.
To validate the proposed model, the predicted effective stiffness of transversely isotropic composites under far field loading
conditions is compared with analytical solutions. The constitutive model incorporating the damage models is then imple-
mented into a finite element code to numerically characterize the elastic behavior of laminated composites. Finally, the
present predictions on the stress—strain behavior of laminated composite plate containing an open hole is compared with
experimental data to verify the predictive capability of the model.
© 2005 Published by Elsevier Ltd.
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1. Introduction

Fiber-reinforced laminated composites have been widely used as primary structural materials in fields of
aerospace, transportation and other industrial applications due to their superior engineering properties
(e.g., high stiffness and strength, low specific gravity and excellent flexibility). Recently, laminated composites
have also been used to retrofit deteriorated infrastructures due to the superior qualities of these materials. The
application to the rehabilitation and strengthening of the infrastructure includes bonding of laminated
composite plates to reinforced concrete beams to improve flexural stiffness and strength, and wrapping of
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reinforced concrete columns with fiberglass/epoxy laminated jackets to provide flexural and shear strength
enhancement to resist seismic loads and to increase axial capacity (Chajes and Januszka, 1995).

Laminated composites are composed of layered sheets of different materials that are bonded together. Lam-
ination is used to combine the directional dependence of strength and stiffness of a material to obtain the best
aspects of the constituent layers (Tungikar et al., 2004). Different from random chopped fiber-reinforced com-
posites, the unidirectional fibers in laminated composites have different fiber orientations in different layers but
have aligned distribution in the same layer. The fibers in laminated composites are generally considered to be
continuous because of the large aspect ratio of fibers (ratio of fiber length to fiber diameter).

The key issue in the development of a constitutive model for laminated composites is how to incorporate
the unidirectional continuous fibers into the constitutive relation. Although numerous constitutive models
based on micromechanics have been proposed to model laminated composites, a micromechanical constitutive
model incorporating infinite cylindrical inclusions, which required for modeling the unidirectional continuous
fibers into the micromechanical framework, does not exist. In this study, a micromechanics-based constitutive
model incorporating the infinite cylindrical inclusions is developed to accurately predict the overall elastic
behavior of laminated composites.

In the present derivation, the unidirectional fibers are assumed to be circular cylindrical inclusions that are
embedded in a matrix. A newly developed Eshelby’s tensor for an infinite cylindrical inclusion (Cheng and
Batra, 1999) is adopted to model the unidirectional fibers and is incorporated into the micromechanical frame-
work. The progressive loss of strength resulting from the partial fiber debonding and the nucleation of micro-
cracks is incorporated into the constitutive model. The Weibull’s probabilistic function is used to model the
varying probability of progressive fiber debonding and the nucleation of microcracks is simulated by adopting
a continuum damage model proposed by Karihaloo and Fu (1989, 1990).

To validate the proposed constitutive model, the predicted effective stiffness of transversely isotropic com-
posites under far field loading conditions is compared with analytical solutions (Herakovich, 1998). The con-
stitutive model incorporating the damage models is then implemented into the finite element code ABAQUS
(ABAQUS, 2002) to numerically characterize the elastic behavior of laminated composites. Finally, the imple-
mented computational model is used to predict the effective elastic behavior of laminated composite plate con-
taining an open hole and the prediction is compared with experimental data (Chang and Lessard, 1991) to
verify the predictive capability of the model.

2. Micromechanics-based constitutive model for off-axis unidirectional fibrous composites
2.1. Overview

Let us consider an initially perfectly bonded, three-phase composite consisting of an elastic matrix (phase 0)
with bulk modulus ky and shear modulus gy, aligned continuous fibers (phase 1) with bulk modulus x; and
shear modulus g, and (penny-shaped) microcracks (phase 2) of radius ¢. Since the aspect ratio of the fibers
is nearly infinite as shown in Fig. 1, the fibers are assumed to be infinitely long, elastic cylindrical inclusions.
Penny-shaped microcracks are regarded as the limiting case of aligned spheroidal voids with the aspect ratio
O — 0.

When inclusions (phases 1 and 2) are aligned, the composite as a whole is transversely isotropic. As load-
ings or deformations proceed, some fibers in the composite are partially debonded (phase 3) and microcracks
are nucleated. Following Zhao and Weng (1996, 1997), a partially debonded fiber is replaced by an equivalent,
perfectly bonded fiber that possesses transversely isotropic moduli. The nucleation of microcracks is simulated
by adopting a continuum damage model proposed by Karihaloo and Fu (1989).

The local stresses, strains and stiffnesses at a typical point within a representative volume element (RVE) of
the composite can be obtained by averaging over the ensemble of all statistical realizations of the fibers and
microcracks. Eshelby’s tensor for a spheroidal inclusion was previously derived by Sun (1998) and is employed
here to model penny-shaped microcracks. The details of the implementation of the Eshelby’s tensor for a sphe-
roidal inclusion into the micromechanical framework can be found in Lee and Simunovic (2001). Eshelby’s
tensor for an infinite cylindrical inclusion to model the unidirectional fibers and the constitutive relation of
laminated composites are explained in detail in the next section.
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Fig. 1. Schematic description of a circular cylindrical inclusion.

2.2. Recapitulation of Eshelby’s tensor for an infinite cylindrical inclusion

The aspect ratio of the unidirectional fibers in laminated composites is nearly infinity; thus, the Eshelby’s
tensor for a spheroidal inclusion is no longer appropriate to model the unidirectional fibers. Instead, a newly
developed Eshelby’s tensor for an infinite cylindrical inclusion by Cheng and Batra (1999) is adopted to model
the unidirectional fibers and is incorporated into the micromechanical framework. The summary of the
Eshelby’s tensor for an infinite cylindrical inclusion is repeated here for completeness of the proposed consti-
tutive model.

Closed-form, time-harmonic elastic field equations caused by an infinitely long, cylindrical inclusion in an
elastic matrix were investigated by Cheng and Batra (1999) to derive the Eshelby’s tensor for the inclusion.
According to Eshelby (1957, 1961) and Mura (1982), the time-harmonic eigenstrain for an inclusion embedded
in an infinite linear elastic medium (i.e., R*) is defined as

€(x, 1) = A(Q)e’i“”eg(x), (1)
with
I, xe
A(Q) = 2
(22) {0, XeER - Q 2)

where Q denotes the region occupied by the inclusion and  signifies an angular frequency (Cheng and Batra,
1999). Fig. 1 shows the schematic description of a circular cylindrical inclusion in which x3 +x3 < ¢* and
—o00 < x1 < oco. Following Mikata and Nemat-Nasser (1990, 1991), the perturbance strain fields induced by
distributed eigenstrain €* can be expressed as

E(x) = /VG(X —x'): ef(x)dx/, (3)
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where ““:” denotes the tensor contraction, x is the local point in the medium and x’ resides in the inclusion. In
addition, G is the second derivative of Green’s function in a linear elastic medium. If we neglect the inter-inclu-
sion interaction effects, then the perturbance strain fields in Eq. (3) can be rewritten as

E=M:¢€, (4)

with
M= / G(x — x')dx/, (5)
v

where M denotes the dynamic Eshelby’s tensor for an infinite circular cylindrical inclusion and was explicitly
derived by Cheng and Batra (1999):

M) = 30y ) + ()], (©)
where

TaR) = s a0 (3290 + 0 (5,90 = S B) = P06 B) + St B (0
with

F(x, k) = /Q ?dx', (8)

S YRR S S o)

2 H

Here, 4; and p; are the Lame constants of the fibers, p; is the mass density of the fibers and J;; is the Kronecker
delta.

The (interior) Eshelby’s tensor S;(x) for quasi-static deformations can be obtained from the dynamic
Eshelby’s tensor M in Eq. (6) by letting w — 0

Sier(X) = Hm (Mg (X)] = [ 75,,() + 5, (10)
where Jfk,(x) are given in Eqgs. (24) and (25) of Cheng and Batra (1999). Since S;; = Sjix; = Sy, the non-zero
components of the Eshelby’s tensor for the inside of the infinite circular cylindrical inclusion can be expressed
as (Cheng and Batra, 1999)

4V1 -1 3 - V1
Siju = méijékl + 81 =) (0w + 0udp), (11)
1
S3j3/ = Z(sjlv (12)
"
Sij33*2(l_vl)5ljv (13)

where v, denotes the Poisson’s ratio of the fibers.
The fourth-rank Eshelby’s tensor S;(x) in Eqs. (11)~(13) can be rephrased as

Sijkl(x) :ﬁijkl(slasbS37S47s57S6)7 (14)
where a transversely isotropic fourth-rank tensor F is defined by six parameters b,, (m=1,...,6):
ﬁzj/kl(bm) = bimiijiygiy + by(0udijig + Suntjiy + Opduiity + ity ) + b3dyigity + bydpmini; + bsd;;0k

+ bs(0u6;1 + 610 ), (15)
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with the unit direction vector n and index m = 1,...,6. If the 1-direction is chosen to be symmetric, then we
have n; = 1, n, = i3 = 0. Additionally, the six parameters on the right-hand side of Eq. (14) take the form:
Tt (16)
83 = ﬁ’ (18)
. 8(11_) (19)
= 1)

The details of the derivation of the Eshelby’s tensor for an infinite cylindrical inclusion can be found in Cheng
and Batra (1999).

2.3. Stress—strain relation for unidirectional fibrous composites

As explained in Section 2.1, some fibers in the composite are partially debonded and microcracks are nucle-
ated as deformations proceed. The overall composite system is regarded as a transversely isotropic material.
By designating the 1-direction as axisymmetric axis and the plane 2-3 to be the transversely isotropic plane,
the stress—strain relation of a typical transversely isotropic solid can be written as (see also Ju and Lee, 2001)

a1l [Chu Cp Cp 0 0 07 /en
02 Cpn Cn Cyn 0 0 0 €22
o Ch Cy C 0 0 0 €
B _ 12 23 2 33 (22)
073 0 0 0 C44 0 0 2623
013 0 0 0 0 C55 0 2613
o12 L 0 0 0 0 0 C55 i 2612
In accordance with the notation given by Hill (1964), the components of the stiffness matrix can be rewritten as
C C
%:/ﬁ Cn=1, Cy =n,
(23)
Cy—-C
%:C44:m7 C55:p7

where £ is the plane stress bulk modulus for the lateral dilatation without longitudinal extension (k = xk +%); m
is the rigidity modulus for shearing in any transverse direction; n denotes the modulus for the longitudinal
uniaxial straining; / denotes the associated cross-modulus; and p signifies the axial shear modulus (Hill, 1964).

Based on the governing field equations for linear elastic composites containing arbitrarily non-aligned and/
or dissimilar inclusions (Ju and Chen, 1994), the effective stiffness tensor C, for the four-phase composite can
be derived as

1+Z{ 6, (A +S,) [¢,s,~(A,.+sr)‘]1H, (24)

in which ““-” denotes the tensor multiplication, C, is the elasticity tensor of the rth phase, I is the fourth-rank
identity tensor, and ¢, signifies the volume fraction of the rth phase inclusion. The Eshelby’s tensors S; and S;
for perfectly bonded and partially debonded unidirectional fibers, respectively, are given in Eq. (14) and the
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Eshelby’s tensor S, for penny-shaped microcracks was previously derived by Sun (1998). In addition, the
fourth-rank tensor A, is defined as

A =(C—C) ' Cp. (25)
Accordingly, the effective elastic stiffness tensor C, for the four-phase composites can be derived as
C* - ﬁijkl(’claT23T35T4a’[5a1—6)a (26)

where the six parameters in Eq. (26) are given in Appendix A and have the following relation:

w=k+n+m—4p—2I, (27)
T, =—m+p, (28)
3=—k+m+1, (29)
Ty =—k+m+1, (30)
5 =k —m, (31)
Te = M. (32)
Thus, the components of the stiffness matrix can be derived as
Cii=n=r1 +41 + 13+ 14 + 75 + 215, (33)
Cpn=Ci=1=14+r1s, (34)
Cyp=k+m=1s5+ 21, (35)
Cy=k—m=r1s, (36)
Cy = m = 1, (37)
Css =p =12+ 16 (38)

2.4. Stiffness transformation for off-axis unidirectional fibrous composites

In Section 2.3, the 1-direction is chosen to be fiber direction and the plane 2-3 corresponds to the trans-
versely isotropic plane in unidirectional fibrous composites as shown in Fig. 2. Now we consider rotations
through an angle 0 about the Xs-axis to derive the stiffness of off-axis unidirectional fibrous composites.
The angle 0 is measured positive counterclockwise from the Xj-axis to the x;-axis as shown in Fig. 3.
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Fig. 2. Coordinates for a transversely isotropic material (see also Fig. 3.6 of Herakovich, 1998).
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X2

Fig. 3. Transformation about an axis.

Following the stiffness transformation law by Herakovich (1998), we have the following stress and strain
transformations:

6,=C:¢e,=T, :0y, (39)
e, =T, : € (40)

where the stiffness matrix of the unidirectional fibrous composites C is given in Eq. (22); the subscript o sig-
nifies stress and strain matrices in the principal coordinate system (x;x,x3); the subscript f denotes stress and
strain matrices in the global coordinate system (.X;X>X3); and the transformation matrices T| and T, are ren-
dered in Appendix B (see also Herakovich, 1998).

By combining Egs. (39) and (40), the stiffness matrix of off-axis unidirectional fibrous composites C, which
is the transformed stiffness matrix through an arbitrary angle 0 about the X3-axis, is derived as

;=T C-T,:¢,=C: ¢, (41)

where the stiffness matrix of the unidirectional fibrous composites with the fibers oriented off-axis takes the
form:

[ E1 1 612 613 0 0 616 i
612 622 623 0 0 626
E13 623 E33 0 0 E36

@]
I
=
N/

0 0 0 Cu Css O
0 0 0 Cyi5 Cs5 O
[Cis Cx Cy 0 0 Cesl

Here, the components of C are given in Appendix C. It should be noted that the overall properties of off-axis
unidirectional fibrous composites should be modeled as an anisotropic material. The details of the stiffness
transformation for the off-axis unidirectional laminated composites can be found in Herakovich (1998).

3. Damage models

Following Zhao and Weng (1996, 1997) and Ju and Lee (2000), the probability of partial debonding of the
unidirectional fibers is modeled as a two-parameter Weibull process. The cumulative probability distribution
function of fiber debonding (damage) P, at the level of hydrostatic tensile stress (6,,); can be expressed as

Pil(@,),] = 1—exp [—((‘;";)I)M

(43)
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with (6,), = (1 - %vl) (Gu),, where (G5 ), is the average hydrostatic tensile stress of the fibers. In addition, the
constants S, and M are the Weibull parameters. Therefore, the current partially debonded (damaged) fiber
volume fraction ¢5 at a given level of (4,,), is given by

by = on(on] = 61— exp |- () 1 (44)

where ¢ is the original fiber volume fraction. The formulation for the internal stresses of fibers needed to ini-

tiate interfacial debonding can be found in Lee and Simunovic (2001) and Lee and Liang (2004).
According to a damage model for the nucleation of flaws in concrete like materials (Karihaloo and Fu,

1989, 1990), the density of nucleated microcracks in the composite can be defined as the following isotropic

scalar function

buo; e < ety
6th>cz . (45)

2 varali-S

' |

- - 4 - - Experimental data

—O— Present prediction /
)/(/)(

1 /T/
0(x

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
(a) Strain

4 I x
----A---- Experimental data

3 [ —o— Present prediction }/]{
2 //
1 /T’////E
0

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
(b) Strain

5 T I -
4 | --A---Experimentd data
——O—— Present prediction /

|

Stress (MPa)
N

Stress (MPa)

Stress (MPa)

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
(c) Strain

Fig. 4. Comparison of stress—strain curves of plain concrete between the present predictions and experimental data (Karihaloo and Fu,
1989). (a) Concrete mix A: E,=28.97 GPa, vy =0.175; (b) Concrete mix B: E,=32.24 GPa, vo=0.180; (c) Concrete mix C:

Ey=39.08 GPa, vy = 0.210.
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where ¢, is the initial density of microcracks. e = , /e}}’e};‘ is the effective strain threshold below which no
nucleation takes place, ¢; and ¢, are material constants that depend on the specific shape and distribution
of microcracks, and ¢ =\ /e;e; = (€], + €, + €33 + 2(e], + &35 + 6))] '/? is the current accumulated effective
strain (Karihaloo and Fu, 1989).

To illustrate the damage constitutive behavior of the present framework, we predict the uniaxial stress—
strain behavior of plain concrete using the present constitutive model incorporating the damage models
and the prediction is compared with experimental data reported by Karihaloo and Fu (1989). Here, we adopt
the material properties for three concrete mixes according to Karihaloo and Fu (1989) as follows: (i) Concrete
mix A: Ey=28.97 GPa, vy =0.175; (ii)) Concrete mix B: Ey = 32.24 GPa, vy =0.18; (iii) Concrete mix C:
Ey=39.08 GPa, vy = 0.21. The predicted stress—strain curves for the three concrete mixes against the exper-
imental data (Karihaloo and Fu, 1989) are depicted in Fig. 4. It is observed from the figure that the present
predictions match very well with the experimental data.

4. Numerical simulations and experimental comparison
4.1. Prediction of the effective stiffness of transversely isotropic composites under far-field loading conditions

The proposed constitutive model is exercised numerically to derive the effective stiffness of transversely iso-
tropic composites. The predictions are compared with analytical solutions (Herakovich, 1998) to show the
validity of the predictive capability of the model. Herakovich (1998) derived constitutive equations describing
the elastic response of T300/5208 carbon/epoxy composite. The composite is transversely isotropic with a
transformation angle 0 varying from 0° to 90°. In this simulation, we employ the same material properties
for the T300/5208 carbon/epoxy composites as those in Herakovich (1998) as follows: Ey,=4.62 GPa,
vo = 0.36, 9 =0.62; E; =227.53 GPa, v; =0.20, ¢»; = 0.001. We compute the effective stiffness of the com-
posites under far-field loading conditions.

The comparison of diagonal stiffness components C;;, Cy4, Co and off-diagonal stiffness components Cig,
Cae, C36 of T300/5208 carbon/epoxy composites between the present predictions and analytical solutions
(Herakovich, 1998) are shown in Figs. 5 and 6, respectively. It is noted from the figures that the responses
obtained by the present prediction are slightly higher than those based on the analytical solutions since the

150 ¢——
'\ —e— Analytical Solution (C_11)
—a—— Analytical Solution (C_44)
120 — a— Andlytical Solution (C_66)
----0---- Present Prediction (C_11)
. ---@--- Present Prediction (C_44)
90 ----a---- Present Prediction (C_66) |—|

C_ii (GPa)

60’ \

0 15 30 45 60 75 90

Fig. 5. Comparison of diagonal stiffness components C;, Cy4, Cs6 of T300/5208 carbon/epoxy composites between the present predictions
and analytical solutions (Herakovich, 1998).
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Fig. 6. Comparison of off-diagonal stiffness components Cig, Ca6, C3¢ of T300/5208 carbon/epoxy composites between the present
predictions and analytical solutions (Herakovich, 1998).

Fig. 7. Geometrical and finite element models for the laminated plate used in the simulation (see also ABAQUS, 2002).
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present framework based on far-field loading conditions does not account for the boundary conditions of the

composite specimens.
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4.2. Experimental comparison of the response and damage behavior of a laminated composite plate with
an open hole

The constitutive model is implemented into the finite element (FE) code ABAQUS installed on the IBM
supercomputer using a user-supplied material subroutine to solve boundary-value problems. The details of
implementation of a constitutive model into the FE code can be found in Lee and Shin (2004) and Lee and
Liang (2004). To verify the implemented computational model, we compare the predicted stress—strain
response of a laminated composite plate with an open hole with the experimental data provided by Chang
and Lessard (1991). The plate is made of T300/976 graphite-epoxy resin prepreg tapes and is loaded in com-
pression in the length direction. The ply orientations of the plate are cross-ply: [(0/90)¢]s. The details of the
specimen configuration is illustrated in Fig. 7(a).

Three-dimensional, constant-strain elements available in ABAQUS are used to model the plate where fine
meshes are used in the vicinity of the hole as shown in Fig. 7(b). Similar to the ABAQUS sample simulation
(ABAQUS, 2002), all plies in the plate are assumed to be 0° and 90° directions for simplicity. The thickness of

8000 g
2
A
A
o
6000 N
- /
2 A
= A
g A o
3 4000
=
o
<
2000 Present prediction [(0/90)6]s ||
O Experimental data#l
A Experimental data#2
0

0.000 0.002 0.004 0.006 0.008
Extensometer Measurement (in)

Fig. 8. Comparison of load—displacement (shortening) curves of a [0/907]; specimen between the present prediction and experimental data
(Chang and Lessard, 1991).

0.660000 * - - -

0.659999 |-

0.659998 |- \

Volume fraction of perfectly bonded fibers

0.659997 |
0.659996 | \.
0.659995 L
0.000 0.002 0.004 0.006 0.008

Extensometer Measurement (in)

Fig. 9. The predicted evolution of volume fraction of perfectly bonded fibers versus displacement corresponding to the predicted p—u curve
in Fig. 8.
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both layers is one half of the plate thickness. We adopt the material properties of the laminated composite
plate according to Table 1 of Chang and Lessard (1991) and Table 1.2 of Herakovich (1998) as follows:
Ey=4.62 GPa, E| = 238.56 GPa; vy = 0.36, vi = 0.20; ¢; = 0.66, ¢ = 0.001. The fiber debonding and micro-
crack nucleation parameters involving this simulation are assumed to be S, = 1.65 GPa, M = 4.0; M =0.05%,
Cc1 = 04, Cy = 1.8.

We compute the applied compressive load and the relative displacement between two points located 1/2 in.
(12.7 mm) above and below from the center of the hole as shown in Fig. 7(a) and compare them with the
experimental data (Chang and Lessard, 1991). The predicted load—-displacement (p—u) curve between the
two points around the hole of the specimen is shown in Fig. 8. We also depict the experimental data (Chang
and Lessard, 1991) in the figure for comparison. Figs. 9 and 10 exhibit predicted evolutions of perfectly
bonded fibers and partially debonded fibers, respectively, versus displacement of the specimen corresponding
to the predicted p—u curve in Fig. 8. To illustrate the nucleation of microcracks, the predicted volume frac-
tion of microcracks is presented in Fig. 11. It is observed from Fig. 8 that the curves based on the present

5.0E-06

4.0E-06 2

3.0E-06

2.0E-06 /
1.0E-06 /

0.0E+00
0

Volume fraction of partially debonded fibers

L 3

" 0.002 0.004 0.006 0.008
Extensometer Measurement (in)

Fig. 10. The predicted evolution of volume fraction of partially debonded fibers versus displacement corresponding to the predicted p—u
curve in Fig. 8.
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Fig. 11. The predicted evolution of volume fraction of microcracks versus displacement corresponding to the predicted p—u curve in Fig. 8.
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prediction and the experiment match well throughout the entire deformation. The good agreement between
the present prediction and the experiment is encouraging for possible use of the proposed computational
model for predicting the elastic behavior of laminated composites.

5. Concluding remarks

A micromechanics-based constitutive model incorporating damage models was proposed to model the
effective elastic behavior of unidirectional laminated composites. First, we adopted a newly developed
Eshelby’s tensor for an infinite circular cylindrical inclusion (Cheng and Batra, 1999) to model the unidirec-
tional fibers and incorporated it into the micromechanical framework. The progressive loss of strength result-
ing from the partial fiber debonding and the nucleation of microcracks was incorporated into the constitutive
model. The predicted effective stiffness of transversely isotropic composites under far field loading conditions
based on the proposed constitutive model was compared with analytical solutions to validate the proposed
constitutive model. Finally, the constitutive model incorporating the damage models was implemented into
the finite element code ABAQUS to solve boundary value problems and to numerically characterize the elastic
behavior of laminated composites. Moreover, the present predictions on the behavior of laminated composite
plate containing an open hole were compared with experimental data to verify the predictive capability of the
computational model.

The results indicate that the proposed computational model is capable of predicting the performance of
structural components made of laminated composites. In addition, the effects of ply orientation on the
response of the laminate composites are also addressed. However, the model needs to be extended to accom-
modate other damage mechanisms (e.g., delamination) and failure criteria to realistically characterize the dam-
age mechanisms and failure in laminated composites. Accordingly, experimental studies to verify the model
parameters and further assessment of the model will be carried out in the future.
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Appendix A. Parameters t,,...,76 in Eq. (26)

These parameters take the form:

3

T = 2,“0 Z(mr)lv
r=1
3

T = 2;“0 Z(mr)zv
r=1

3=/ Z[(mr)l + 4(my), + 3(m;)s] + 2p Z(mr)3a

r=1

3
T4 = 2U Z(mr')m
r=1

Ts = ;“0{1 + Z[(mr)4 +3(m,)s + 2(mr)6]} + 2 Z(m")sv

r=1

3

1
B + ;(mr)s

1

T = 2l

i
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in which (m,)y, .. .,(m,)s are the parameters of the fourth-rank tensor F gl (M), ..., (m,)e], which is the prod-
uct between Fu[h.(b.),,...,¢,(b)s) and Fiul(L,)),-- ., (L)s). Fiull),,---, (L) is the inverse of
F,]k,[(]r)17 ..., (j.)¢] with the following parameters:

=¢.{- (br)y + 4(br)y + (br)5 + 2(by)g] = 4(S0),[(Br), +2(br); + (br)s]
(S»)4[( ) +4(br)y + 3(br)3] — 2(8:)6(Br)1 }
U)o = &, {=2(S),l(br)y + (Br)g] — 2(S,)5(br)s
Uy =~ (S; (br +4(b)y + (br)y + 2(b)g] = (S)s[(Br)y +4(br)y + 3(Br)s] = 2(S1)6(Br)3 }
Urda = &A= (S)il(Br)s + (br)s] = 4(S)l(Br)s + (Br)s] = (S)al(Br)y + 3(br)s + 2(b,)6] — 2(S1)g (1)}
Ur)s = o {=(S)3[(Br)s + (B)s] = (S1)s[(Br)y + 3(Br)s + 2(br)g] — 2(S)s(B1)s}
Ur)e =5 = 6:[2(S1)6(Br)g-

(47)
In addition, (b,)y,...,(b,)s are the parameters of the fourth-rank tensor F ikt[(by)y, - -+, (b,)g), which is the
inverse of F[(d,);,--.,(d,)s with the following parameters:
(di); = (S, (d1), = (51),,
(d); = (S1)s, (d), = (S1)s)

L O 48

@) =3 (2 ) (s (43)
[ )

(d1)s :5 L — Ho + (S1)s3

(d2)1 (S2)17 (dZ)z = (52)2»

(d2); = (S$2)s,  (da)y = (S2)y (49)

(d2)s = (S2)s,  (do)g = —%4- (82)6:

(d3)1 2el,“O + (S3)17

(d3), = 2esp1y + (S3),,

(d3); = 2e3p10 + (S3)5, (50)

(d3)4 = elﬂuo + 462)@ + 264,[10 (S )4,

(d3)s = esho + 2espy + 2e o + (S3)s,

(d3)6 = 2egpty + (S3)67

where ey, ..., es in Eq. (50) are the parameters of the fourth-rank tensor F skilers - - ., eq], which is the inverse of
Fiulfi, ..., fo] with the following parameters:

11

f1=m+m,
ﬁ:_ﬂl7
Ok
A= T
o (51)
fi=— Ky
4 3l€1+4,u1 b
iy
=AM,
fs 3 + 4 My 0

fe =
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Appendix B. Transformation matrices T; in Eq. (39) and T, in Eq. (40)

These matrices are given by

cos? ) sinf0 0 0 0 2cos 0sin 0
sin® 0 cos’0 0 0 0 —2cos0sin0
T, — 0 0 1 0 O 0 7 (52)
0 0 0 cosf —sinf 0
0 0 0 sinf cos6 0
L—cosOsinf cosOsinf® 0O 0 0 cos? 0 —sin” 0
cos? 0 sin® 0 0 0 0 cosfsin 0
sin® 0 cos? 0 0 0 0 —cos 0sin 0
T, = 0 0 1 0 0 0 (53)
0 0 0 cosf —sinf 0
0 0 0 sinf cosb 0
L —2cosfsinl 2cosfsinf 0 0 0 cos? 0 — sin” 0 |

Appendix C. Components of C in Eq. (42)

These components are

Cyy = c*Cpy +262°Cy + s Cop + 46257 Css,

Cy = s*Cyy 4 2637 Cy + ¢*Cyy + 4¢P Css,

Cy3 = Co,

Cy3 =5°Cpp + *Cos,

Ci3 =c*Cip 4 5°Cas,

Cip = 25*Chy + (¢ +51)Cry + 57 Cy — 4c%s*Css,

Cy = s°Css + c2C44, (54)
Css = *Css + 5°Cua,
Cys = —csCus + ¢sCss,
Ces = *s°Cyy + (¢ — 52)2C55 + 52Cy — 26%5%C,
Cis = *sCyy — 2¢s(c? — %) Css + ¢s(s* — ) Chy — ¢s°Coy,
Cas = ¢5°Cyy + 2¢s(c? — 57)Css + cs(c? — s7)Ca — ¢*sCoy,
Cs6 = —csCas + ¢sCia,

in which ¢ = cosf and s = sin0.
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